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Abstract

In many manufacturing environments such as the nuclear weapons complex, emphasis
has shifted from the regular production and delivery of large orders to infrequent small
orders. However, the challenge to maintain the same high quality and reliability standards
while building much smaller lot sizes remains. To meet this challenge, specific areas need
more attention, including fast and on-target process start-up, low volume statistical
process control, process characterization with small experiments, and estimating
reliability given few actual performance tests of the product. In this paper we address the
issue of low volume statistical process control. We investigate an adaptive filtering
approach to process monitoring with a relatively short time series of autocorrelated data.
The emphasis is on estimation and minimization of mean squared error rather than the
traditional hypothesis testing and run length analyses associated with process control
charting. We develop an adaptive filtering technique that assumes initial process
parameters are unknown, and updates the parameters as more data become available.
Using simulation techniques, we study the data requirements (the length of a time series
of autocorrelated data) necessary to adequately estimate process parameters. We show
that far fewer data values are needed than is typically recommended for process control
applications. We also demonstrate the techniques with a case study from the nuclear
weapons manufacturing complex.
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Introduction

Advanced manufacturing technology, pressured by the need for greater efficiency and
responsiveness to the customer, now relies heavily on strategies such as low volume
production runs to more quickly meet the changing demands of the customer and to lower
manufacturing costs. In many industries this situation has included a dramatic shift in
production philosophy from the delivery of a few big orders to many smaller ones. As a
result, there is a need to develop statistical process control (SPC) techniques that are
useful in low volume manufacturing environments, where relevant data may be scarce.
This is especially true in the nuclear weapons complex, with shrinking budgets and
decreasing need for large quantities of new weapons. For the small lot manufacturing
that remains, it is particularly important to have modern, appropriate statistical methods
in place to support and enhance quality improvement efforts.

In a low volume manufacturing environment, the data necessary to accurately estimate
process parameters such as the process mean and standard deviation, and the limits for
standard statistical control charts, are usually not available prior to the start of production.

The usual recommendation for establishing valid control limits for the X chart, for
example, is to gather around 25 samples of 4 to 6 observations each as a baseline (see
Montgomery (1991)). Quesenberry (1993) recommends a sample of size 300 to establish
permanent limits for the individuals chart. Samples this large may not be feasible in a
low volume environment, since the number of data points needed to satisfy these
recommendations might exceed the total number of parts produced in a short production
run. Various techniques that have been proposed to address this problem are summarized
in a report by Crowder and Halbleib (1995).

In this paper we investigate an adaptive filtering approach to process monitoring with a
relatively short time series of autocorrelated data. We consider the cases in which the
model parameters are known and unknown, and include a discussion of the associated
estimators in each case. For the case in which the parameters are known, we describe the
estimation procedure and discuss how the filtering algorithm uses the data from the time
series, as well as other properties of the resulting Bayesian estimator. For the case in
which the parameters are not known, more typical in a low volume manufacturing
environment, we describe a two-stage estimation procedure combining maximum
likelihood estimation in the first stage with Bayesian estimation in the second stage. This
adaptive procedure assumes that initial process parameters are not known, and updates
the estimates as more data become available.

Much has appeared in the recent literature on process control charting with autocorrelated
data. See Vander Wiel (1996), and Wardell, et al (1992, 1994), for example. Most of the
attention has been given to monitoring the residuals from a specified time series model to
detect mean level shifts, with emphasis on average run lengths. Little attention has been
given to the problem of sample size requirements for possibly short time series associated
with low volume production. The recommendations above for very large sample sizes



are based on how large the sample size must be for the estimated control limits to perform
essentially like the known control limits. The emphasis here, however, is on estimation
and minimization of mean squared error (MSE) rather than the traditional hypothesis
testing and run length analyses associated with control charting and control limits. With
low volume production and small lots, hypothesis testing and run length analyses may not
even be meaningful, since the expected run length may well exceed the entire production
quantity. Using simulation techniques, we investigate the small sample properties of a
two-stage estimation procedure by evaluating mean squared errors and convergence rates
of parameter estimates. Based on the results of this investigation we make
recommendations regarding sample size requirements for estimating parameters from a
possibly short time series of autocorrelated data. We show that far fewer data values are
needed than is typically recommended for control charting applications. We also
demonstrate the techniques with a case study from the nuclear weapons manufacturing
complex, applying the adaptive filtering algorithm to a time series of battery cathode
weight data. Finally we discuss extensions to more general time series models.

Process Model

The model that we consider for monitoring a process mean with a possibly small sample
is the so-called steady model (see Smith (1979)). The scalar steady model is described by

y, = |, +E with the ¢,'si.i.d. N(0, 6?) (1)
=M +V, with the v,'s i.i.d. N(0, 6)
t=12,...,n U, 1s the initial mean

where y, is the true unknown process mean at time t, and {y,,7 =1, 2, ..., n} are the
observed process outputs. The sequence {€,,¢ =1, 2, ..., n} can be thought of as random
observation errors while the sequence {v,,t =1, 2, ..., n} can be thought of as random
shocks to the process.

It is convenient to describe this process in terms of the ratio of the two variance
2

. o . . .
components, which we denote 6 = —. Figure 1 shows simulations of the above process
(o)

£

model for 6=.05, 1.0, and 5.0, each with &, =1.0. Note that the volatility of the process

is a function of the parameter 6. With 0=.05 the process is relatively stable, while with
6=5.0, the process is very unstable. Note that 8=0 in model (1) corresponds to an
independent and identically distributed (i.i.d) process model, often used in SPC
applications. In practice it is expected that 8 will typically fall between .05 and 1.0, a
range associated with mild to moderate levels of autocorrelation.




[ Insert Figure 1 Here]

Note that for this model the sequence , is a random walk, appropriate for situations

where the most important characteristic of the process in question is its current mean
level, with persistent growth or decline being either absent or unimportant. Harrison and
Stevens (1976) discuss this model as a special case of their Dynamic Linear Model.
Harrison (1967) uses the model to describe customer demand for a steady selling product,
and as a tool in short-term sales forecasting. Meinhold and Singpurwalla (1983) examine
this model as a special case in their overview of the Kalman filter. One of the advantages
of this representation is the parametric structure of the model. At any given time,
probabilistic information regarding each y, is available in the form of a posterior
distribution given all available data. The model representation (1) also describes how the
process mean changes over time as a result of random shocks.

It should also be pointed out that the steady model has the same autocorrelation structure
as a class of ARIMA(O, 1, 1) models of Box and Jenkins (1970), models that are widely
used in practice. This can be shown by looking at the correlation between successive

differences ( y, - y,_l) and ( Via— y,_z) . Box and Jenkins mention that models of this

kind have been found useful in inventory control problems, in representing some kinds of
disturbances occurring in industrial processes, and in econometrics. In this paper we first

discuss estimation under model (1) with the parameters 4,, 6., and 6> known. We then
illustrate a two-stage procedure for estimation under model (1) with the parameters f,,
o?,and o unknown, and study the small sample properties of these estimates, relevant
to the problem of low volume statistical process control.

Estimation with Parameters Known

The derivation of the best estimates of the process mean uses a Bayesian approach. We
first assume that the initial process mean g, and the variance terms 0. and o are

known. In practice, especially with a low volume or startup process, these parameters
will not be known. In a later section we address the same estimation problem with these
parameters unknown and study the properties of the resulting estimators.

With y =(y,, ¥,---, ¥,)" the data vector and 4 = (/.Ll,/,l,z,...,un) the mean vector from
model (1), we wish to derive E( E' ), the posterior mean and Var(y| y), the posterior
variance of the vector . The posterior mean will be our estimate of u and the posterior

variance will provide an uncertainty band about that estimate on the resulting control
chart. The derivation, given in Appendix A, uses the fact that the conditional distribution

of y|u is multivariate normal with mean u and variance-covariance matrix Io'e2 while

the mean vector u has a multivariate normal distribution that depends only on 4, and



o?. The conditional distribution of ¥ |4 is used as a likelihood function and the

distribution of u is used as a “prior” to develop the Bayesian estimator of the mean

vector Y= ( H ..., /,tn) . Using these results (see Appendix A), the posterior
distribution of |y is also multivariate normal with posterior mean

E(uly)= iy +Vo,(Va? +107) " (y - Iiy)
= Ly +VO(VO + 1) (y — Lig,) )
and posterior variance
Var(u|y)=Vo. -Vo;(Vo, + 1a;)"'Vo,

= VOV + I)'o! 3

2
v

o
using the substitution 0 = prg The matrix V in expressions (2) and (3) is defined by

£

V, = min(i, j) forall i, j € {l,...,n}. The matrix I is the nxn identity matrix, and 1 is

an nXx1 vector of ones.

Since it is the posterior mean, E(y| y) is thus the Bayes estimator (under squared error

loss) of the vector of u,'s. Note that with 4, of ,and 0'3 known, the posterior variance
does not depend on the data. Note also that the weights applied to the data vector y,

contained in the matrix expression VO(VO + I)™', depend only on 6 and the sample size

n. In the next section we will investigate these weights and the properties of the estimator
E(u|y) further.

Properties of Estimator With Parameters Known

The posterior mean E(u|y) is the Bayes estimator, under squared error loss, of the
vector of y,'s (assuming normality of the €,'s and the v,'s ) and thus has the optimality
properties of a Bayes estimator (see Sarris (1973)). When u,, 6, and 6 are known,
these results hold for any sample size. The posterior mean E(j | y) is also the Kalman
filter estimate of the mean vector U. See Meinhold and Singpurwalla (1983) for a

discussion of the Kalman filter as a Bayesian estimate. Duncan and Horn (1972) show
that even if the €,'s and the v,'s are not normally distributed, the Kalman filter estimator



will still be the minimum mean square linear estimator provided the ¢ 's and the v,'s are
independent with zero means and finite second moment.

Our approach is to use E(u|y) to update and improve the estimate of each y; after every

new data point is obtained. For a low volume process this feature is especially important
because it allows improvement of initial estimates based on samples that are possibly
very small.

Figures 2-4 show how the weights applied to the process data vary for 0=.05, 1.0, and
5.0. These figures show the relative weights for the case in which a time series of 20
observations is available for estimating a mean vector. Again, these weights can be
computed before any data are collected if 8 is known. If 8 is not known, the weights
will be estimated adaptively.

[Insert Figures 2-4 Here]

Figure 2 shows the weights for estimating 4, ,um, and u,, when 6=.05. When 0 is

relatively small, the process mean changes very little from one time period to the next
(refer to Figure 1). So for a short time series, when estimating 4, , the initial mean g,

receives most of the weight. The weights applied to the data vector y = (y;,¥3Y20 )
are largest for the first observation y, and decrease slightly for each successive data
value. But all twenty observations are used for estimating y, as well as the other u.'s.
To estimate p,, the initial mean receives very little weight, as expected, and observation
¥, receives the greatest amount of weight. The weights then decrease in both directions
away from y,,. To estimate u,, the initial mean again receives very little weight, with
observation y,, receiving the greatest amount of weight and each preceding data value

receiving less weight. Note that this weighting scheme differs from traditional SPC
charting which would use only data before or at time ¢ to estimate i, .

It can also be shown (see Crowder (1986)) that the estimate of the last element in the
mean vector, E(u,| ¥), is an exponentially weighted moving average (EWMA) of the

initial mean y, and the data (y,, y,,...,?y,) , with EWMA parameter

_(-0+(6” +40)")
= > .

A 4)

With the parameter 6=.05 in expression (4) this corresponds to A =.20, 6=1.0
corresponds to A =.62, and 6=5.0 corresponds to A =.85. In practical applications a
value for A between .2 and .4 is often recommended.

Figure 3 shows the weights for estimating 4, 4,,and i, when 6=1.0. In this figure
the pattern of the weights is the same as discussed above, but the relative weights are



much different. When 6=1.0, the process mean changes more from one time period to
the next (refer to Figure 1). So as expected, to estimate K, , observation y, receives more

weight when @ is larger. Figure 4 shows the weights for estimating 4, f,,and f,

when 0=5.0. In this figure the pattern of the weights is again the same as discussed
above, but now to estimate y,, observation y, receives almost all the weight. When 6 is

this large, the process mean can change dramatically from one time period to the next
(refer to Figure 1), so the weighting pattern in Figure 4 is expected. So when 0 is
known, the weights should be investigated before any data are collected. In low volume
SPC this is especially important because the weights show what data contain most of the
information about each process mean y,. When 6 is large, for example, only a few

observations before and after y, contain information about u,. A decision about the

process mean during a short production run could thus be delayed until all relevant data
were available, and the best possible estimate could be obtained without unnecessary
delay.

When 0 is essentially zero (o, << 0, ), using expressions (2) and (3) above,

E(u; | y) = Uy, the initial mean, for every i, and

Var(u|y)=io, .

In this extreme case, the estimator essentially ignores the data since o, , the observation
error standard deviation, is very large relative to &, , the system standard deviation. This
means that the process mean is nearly constant and equal to 4,, the initial mean, and

most of the variation in the data is due to observation error, not movement of the process
mean. So the estimate of the process mean should remain nearly constant.

In the other extreme case, when 8 is very large (o, >> 0, ), again using expressions (2)
and (3) above,

E(y; | y) = y;, the i th observation, for every i, and

Var(u|y) = o; forevery i.

In this case, the estimator uses only the most current data since 0, , the observation error
standard deviation, is small relative to &, , the system standard deviation. So the process
mean is changing dramatically, and because o, is small most of the information about

the current process mean is contained in the current observation. Most of the variation in
the data is due to random shocks to the process mean, not observation error. With
essentially no observation error, the best estimate of the current process mean should be

10



the most recent data value. In most cases, however, it is our experience that 6 will fall
somewhere between .05 and 1.0 and the weights applied to the data will be as they appear
in Figure 2 or 3.

Estimation With Parameters Not Known

4
In this section we present estimates of the process mean vector U = ( J 7 7 A ,u,,)
assuming that the initial process mean g, and the variance terms ¢, and o, are unknown.

In practice, especially with a low volume or startup process, these parameters will
typically not be known. The mean vector will be estimated using a two-stage approach
outlined by Sarris (1973). The first stage of the procedure uses maximum likelihood to

estimate the unknown parameters 4,, 6., and 6. The second stage then uses these

estimates in the Bayesian estimation procedure described earlier to estimate the unknown
mean vector. In the next section we will investigate the important small sample
properties of this two-stage procedure and its applicability for low volume statistical
process control.

The maximum likelihood equations used to estimate 4,, 67, and o are developed in

4

detail in Appendix B. The derivation uses the fact that the vectors 4 = (/,tl sl ey u,,)

’

and € = (81, &,y 8,,) from model (1) both have multivariate normal distributions. It is
then the case that y = 4+ € alsohas a multivariate normal distribution that depends on

the unknown parameters i, 6., and o . Its multivariate normal density function is the
likelihood function that is used to obtain the maximum likelihood estimates (MLEs) of
K, 02, and o7,

Using the maximization techniques outlined in Appendix B, the MLE of 4, as a function
of 8 is

5(0)=(1P" @) 1P (0)y, ®

and

52(6)= 2y~ 1l0)) P'6)y ~1400) ©

11



is the maximum likelihood estimate of the observation error variance as a function of 8.
The matrix P(@) in expressions (5) and (6) is defined by P(0) = (VO + I). Note that if
6 =0 (the i.i.d. case of the steady model) in (5), P(8) = I, the identity matrix. Then

£,(6) reduces to the usual sample average and & (6) reduces to the usual sample

variance with denominator n. The third parameter estimated using the maximum
2

I . o . .
likelihood equations, 6 = O_—‘; , has no closed form solution and must be estimated
£

numerically. Once the maximum likelihood estimate of @ is obtained, its value is
substituted into expressions (5) and (6) to obtain estimates of 1, and of. The maximum

likelihood estimates are then substituted into equations (2) and (3) to obtain an estimate
of the posterior mean E( U | y ) and the posterior variance Var( M | y ). We denote the

A

resulting two-stage estimator of the mean vector § by E( 4| y), and refer to the resulting

procedure of updating after every new observation as an adaptive filter.

Properties of Two-Stage Estimator With Parameters Not Known

Since l4,, 62, and 0 are not known exactly, the error of E(u|y) in estimating u will be

increased in the two-stage procedure. Sarris (1973) discusses this procedure in a more
general context and Cooley (1971) shows that the estimators of quantities like yu,, o7,

and O are consistent and efficient, both large sample properties. So for large samples,
the optimality properties of the Bayesian estimator E(j | y) will still hold true. However,

the results for small samples are not as well known, and will be investigated further here.

The distributions of the maximum likelihood estimators were studied in detail and the
increase in mean squared error (MSE) associated with the two-stage procedure was
evaluated, as a function of sample size, using simulation techniques. These results can be
used as a guide for deciding what minimum sample sizes are required for statistical

process control with autocorrelated data using this procedure. The distribution of 8, the
maximum likelihood estimator of 6 was studied by simulating process model (1) 1000
times for different sample sizes and different values of 6. The graphical results are
presented in the form of boxplots in Figures 5-7.

[Insert Figures 5-7 Here]

In Figure 5 with 6=.05 the search routine was confined to the interval [0, .5], in Figure 6
with 6=1.0 the search routine was confined to the interval [0, 10], and in Figure 7 with
6 =5.0 the search routine was confined to the interval [0, 25]. For samples of size 10 the
maximum likelihood function often achieved its maximum on a boundary of the search
interval, producing unusual looking boxplots. Clearly, samples of size 10 are not
adequate for estimating 8. However, it appears that with samples of size 50 or greater

12



the distribution of @ is well behaved, with the average value of the simulated distribution
close to the actual value of 6. For 6 =.05 and 6=5.0, with sample size 25, the

distribution of @ is not well behaved, but for 8=1.0 and sample size 25 the distribution

of @ is reasonably well-behaved.

A second metric to use in the small sample study is the MSE associated with estimating
the mean vector 4= (4, thy,.... 4, ) . The quantity E(Y, (4 — E(i]y))*}, the MSE

i=1 -
when the parameters i, o, and 6 are known, was compared to the quantity

E {2 (u — E(u X))2 }, the MSE when the parameters 4, 6, and 6 are not known and

i=1
with the maximum likelihood estimates substituted into the Bayesian estimate (2). Table
1 below shows the increase in MSE as a function of sample size for various values of 6.
Each increase in MSE that appears in the table was computed by averaging the results
from 1000 simulation trials.

[Insert Table 1 Here]

Note that for sample sizes n=5, 10, and 15, the increase in MSE is at or above 50% for all
_ values of @, suggesting that these small sample sizes will not provide estimates nearly as

accurate as when the parameters /4, of ,and O are known. In the other extreme of the

table, samples of size 100 or greater are clearly adequate for estimating (4, of , 8,and
the mean vector, with increases in the MSE no greater than 10% for most 6. It is for
samples of size 25, 50, and 75 that the conclusions are less clear. For samples of size 25,
the increases in MSE are mostly over 30%, while for samples of size 50, the increases in
MSE are 12-25% with the minimum occurring around 6=1.0. And for samples of size
75, the increases in MSE are 8-19% with the minimum occurring between 6=.25 and
0=2.0. So for samples as small as 50 the procedure works reasonably well for most 6,
and it appears that samples of size 25 are required as a minimum, especially if 6 is small
(close to an i.i.d. process).

In the next section we present the algorithms for statistical process control using the
above procedures and model (1).

Application to SPC and LVSPC

In this section we outline the estimation procedures with their application to SPC for both
the cases when the parameters 4, 6 and o are known and when they are not known.

Process control decisions are based on probabilistic information regarding the process
mean, given in the form of a posterior distribution for the mean vector 4. The difference

between the approach here and standard SPC is that the emphasis is on estimation rather

13



than on hypothesis testing. The steady model (1) assumes small frequent changes in the
process mean, so the question of whether a major “shift” in the mean has occurred is not
relevant. There is no test of hypothesis that the process mean has shifted. The basic
strategy is to obtain the best possible estimate of the process mean u, given all available

data, in terms of a posterior mean and variance. Then any decision to adjust the process
is based on those estimates, not on fixed control limits. Other considerations such as
process margin relative to specifications and costs of nonconformance and adjustments
would also be part of any decision to make a process change.

The algorithms below are presented in a way that makes them readily applicable to
statistical process control. As a result of the analysis of the previous section, we
recommend a minimum of 25 observations before beginning to use the procedure as a tool

for making process adjustments when g, 6° and ¢ are not known. The plotting

procedure can be initiated, however, with as few as 3 observations when w,, 6’ and o,
are known. In each case the procedure is updated after every new data point.

Case 1. Parameters 4, 6. and o’ (or 0) known.

Given the data vector y =(y,, ¥,,..., ¥,), (starting with n > 3)

1. Compute: E( M ] y ) and Var( E' y ) from (2) and (3). These are the posterior mean and

variance, respectively, of the vector u .

2. Construct a time-ordered plot of the intervals: E(y, |y)+ k- Var(u|y )2, for

i=1,2,...,n, where y, is the most recent data point. The constant k is chosen from

a table of normal probabilities, i. e., kK =1.96 provides a roughly 95% confidence
interval for 4, , using the posterior distribution of u, |y .

3. Compare these intervals to a nominal or target value and make a decision based on
this estimated process performance as well as any other cost considerations.
4. Collect the next data point y,,, and return to Step 1 to update the estimates.

The more likely case in a low volume manufacturing environment is that the parameters
Uy, 6> and & will not be known.

Case 2. Parameters u,, 6’ and ¢ (or 6) not known.

Given the data vector Y=V Yarees ¥, Y, (starting with n > 25)
A A A2

1. Compute the maximum likelihood estimates: 8, u&,, and o ..

2. Compute: E(u|y) and Var(y| y), the estimates E(y | y) and Var(y y) with the

maximum likelihood estimates substituted for the unknown parameters.

14



3. Construct a time-ordered plot of the intervals: E(4 |y) %k -Var(u,|y)"*. Simulation

studies were performed to help choose the appropriate value of & for the case of

unknown process parameters. For small sample sizes (say n less than 50) a

larger k value is needed than for large sample sizes (say n greater than 50). We

recommend k =4 for small sample sizes and k =3 for large sample sizes.

4. Compare these intervals to a nominal or target value and make a decision based on
this estimated process performance as well as any other cost considerations.

5. Collect the next data point y, ,, and return to Step 1 to update the estimates.

In the next section we illustrate the above algorithm with a case study using battery
cathode data.

Case Study Using Battery Cathode Data

Figure 8 shows 143 consecutive measurements of cathode weight from a low volume
production run of batteries. The cathode is one component of a high-reliability lithium
battery produced for weapons applications. The weight of the cathode must be tightly
monitored and controlled because of strict requirements on cathode density. Since this
process is typically a low volume production process, we use this data to illustrate how
the low volume SPC algorithm works in practice. The steady model (1) was fit to the
complete data set and shown to be a reasonable model for this time series.

We start by illustrating the approach assuming that only the first 25 observations are
available. The algorithm can be started with just a handful of observations if the variance

components o and ¢ and the initial mean y, are known. But if these parameters must
be estimated, a minimum of 25 observations is recommended.

Figures 9-11 show the results of the analysis using n=25, 50, 75, 100, and 143
observations. In practice the estimate of the parameter 6 and the mean vector 4 would

be updated after every new measurement y, for n=25, 26, ..., 143, and the procedure

outlined above would be followed to construct each graph. The estimates of the means,
along with error bars, would be computed and plotted after each new observation and
then compared to a target or acceptable region for the process mean.

[Insert Figures 9-11 Here]

Figures 9-11 show the battery cathode weights plotted along with the corresponding
confidence intervals for the u,'soverlaid, for n=25, 50, 75, 100, and 143. Note that the
confidence intervals do not always cover the data. This is because the filtering algorithm
produces an estimate of the process mean that “smooths” the data. So if the estimate of
the posterior variance is not large, the confidence interval need not cover the data value.
In practice the interval estimate for the process mean, rather than the data value, would be
used to make decisions regarding process adjustments. Figure 11 shows the results of the
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algorithm applied to the entire data set. This graph can be used to retrospectively look at
process performance during the short production run. Figure 12 shows how the estimate
of 8 changes sequentially as the sample size increases, for n=3, 4, 5, ..., 143.

[Insert Figure 12 Here]

For each sample size, the likelihood function for & was maximized over the interval [0,
5], an adequate search interval for this process. With all the data included, the likelihood

function is maximized at 8=.40. Notice how the estimate of 8 varies about this value
before converging to .40 when the sample size is sufficiently large. During periods of
process instability early in the time series (for example, around observation 25 and
observations 45-55), the estimate of 8 fluctuates greatly. The variation in the data at
these observations is not explainable by the model and is an indication that a “special
cause” may be present in the process. After observation 60, the estimate of 0 is
relatively stable.

Summary and Conclusions

In this paper we have investigated an adaptive filtering approach to process monitoring
with a possibly short time series of autocorrelated data. The emphasis in this approach is
on estimation and minimization of mean squared error rather than the traditional
hypothesis testing and run length analyses associated with process control charting with
control limits. The steady model (1) assumes small frequent changes in the process
mean, so the question of whether a major “shift” in the mean has occurred is not
considered directly. There is no test of hypothesis that the process mean has shifted. The
basic strategy is to obtain the best possible estimate of the process mean u , given all

available data, in terms of a posterior mean and variance. Then any decision to adjust the
process is based on those estimates, not on control limits.

For the case in which initial process parameters are not known, typical in low volume
manufacturing, we described a two-stage estimation procedure that combines maximum
likelihood estimation in the first stage with Bayesian estimation in the second stage. The
resulting adaptive filter updates the process parameters as each new data value becomes
available. Using simulation techniques, we studied the data requirements necessary to
adequately estimate process parameters. We have shown that far fewer data values are
needed than is typically recommended for process control applications. Depending on the
value of @, as few as 25-50 observations may be adequate, based on MSE comparisons.
We also demonstrated the techniques with a case study from the nuclear weapons
manufacturing complex, applying the adaptive filtering algorithm to a time series of
battery cathode weight data.

Finally, the development given here has assumed the steady model (1), which
corresponds to an ARIMA(O, 1, 1) model, using the notation of Box and Jenkins (1970).
The methods discussed here can in fact be extended to more general time series models,
using the correspondence between state-space models such as the steady model and
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ARIMA models (see Appendix C). The advantage of the state-space representation is
that probabilistic information about the process mean is readily available in the form of a
posterior distribution that can be used to construct confidence bands for the process mean.

Computer programs have been written in FORTRAN, C, and Matlab™ code to

implement the two-stage estimation procedure described earlier. These are available
upon request from the author.
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Appendix A. Estimation of Mean Vector with Variance Components Known

In this appendix we derive the best estimates of the process mean using a Bayesian
approach, assuming that the initial process mean y, and the variance terms 6 and o are

known. With y=(y,, y;,..., y,), the data vector, and U = (/.L,,/Jz,...,u,,) , the mean
vector, we have from the steady model that y|u , 6> ~ MVN(u, Io?), where I is the
nxn identity matrix. This distribution plays_tk;: role of likelih;od function for

Y= Yoo ¥, -

Now if we express the y,'s in terms of i, and the v,'s, we have
=ty tV,
Ho=ly +V, +V,

=l +Vi+V,+V,y

W, =l +V,+V,+Vy+..+V,,
so that y| u,, 02 ~ M VN(LuO,VOf) , where 1 is an nx1 vector of ones, and

V, = min(i, ) forall i, j € {L,...,n}.

7’

This distribution plays the role of a “prior” distribution for U = (,ul sy eens ,u") .
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The distribution of _y_| U,o0, ~ MVN(u, IO'EZ )is then treated as a likelihood function and

2
the distribution of EI Uy, OF ~ MVN (MtO,VGVZ ) is treated as a prior distribution in the

’
development of a Bayesian estimator of the vector U = ( s ..., ﬂ,,) . Combining these
distributional results, the posterior distribution of x|y is also multivariate normal (see

the development in Meinhold and Singpurwalla (1983)) with posterior mean
E(uly)= lu +Vo,(Vo, +167)" (y ~ lity)

= 1ty +VOVE + 1) (y - )
and posterior variance

Var(u|y)=Veo, -Vo,(Vo, +Io})"'Vo,

=VO(Ve + 1) 'c’

2

A4

. I o
using the substitution 8 = —.

4

Appendix B. Estimation of Variance Components via Maximum Likelihood

[ %)

O

v

we
20
O.C
’

To develop the maximum likelihood equations to estimate 1, O'E2 ,and 6 =

begin by noting that the vectors u = (/.tl, Wyeons yn) and € = (8] 3 Eenns 8") from the
steady model both have multivariate normal distributions. Specifically,

EI,MO,O'V2 ~ MVN(l/JO,VO'VZ) and g|o? ~ MVN(Q, 10'62) where 1 is an nx1 vector of
ones, 0 is an nx1 vector of zeroes, and V;; = min(i, j) forall i,j € {1,...,n}. Since these
two vectors are independent, it follows

that y = u + € has a multivariate normal distribution as well. That is,

zl Uy,07,067 ~ MVN (Luo,VO'VZ +Io? ) . To express the variance in a more natural way,
0.2

we will again reparametrize by defining 8 = —5. We may then characterize this
Lo

distribution as y|,0; .6 ~ MVN (1, P(8)0?) where P(8) =VO+1. The likelihood

function obtained from this is
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2 1 ! , -
f(z|/,¢0,0'e ,0) = T T CXp{- 207 (Z‘lﬂo) P (9)(2‘ 1“0)}

£

It is easy to see that the logarithm of this function can be expressed as

2,0)= = b _2 no?
(44:02.6) = In £ (y1145,52.8) = >+ In27 - 1n|P(6)| -7 - Ino;

’

~3o72 =) PO ). (B1)

€

This is the usual log-likelihood function we seek to maximize over each parameter. We
first obtain an estimate for (4, by expanding the quadratic form in the last term as

follows:

1 ’ ’
E(,uo,of,e) =557 (X -1 %)P-I(G)(X—LUO)+ terms unrelated to L4
1

20?7

(¥ 7@)-1 7O - o

1

-l @y - (P @)y PO+ (1P O

20,
{Z’P “(0)y- (l,P'l(G)X)-Zuo + (1,P'1(9)l),,¢02}+_"

£

1
20°

£

where the final equality follows from the fact that P7'(6) is symmetric and that the
transpose of a scalar is just the scalar itself. Differentiating with respect to L, and

equating to zero, we have

aa_;f; = "c}lf{l,P 1@y - (1'13‘1(9)1)#0} =0.
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Solving this for Y, gives us

1,(0)= (l,P“ (9)1)_ 1P 6)y. (B2)

Similarly, we differentiate (B1) with respect to 0'52 in order to find its maximum
likelihood estimate:

;i:_ =t ;2)2 (X—%)’P_l(e)(z—lyo)=0

£

which, upon solving for 0'62 , gives us

5(0) = (y-1(0)) P @)y~ 10(6)). ®3)

We can then substitute (B2) and (B3) into (B1) in order to obtain a numerical estimate of
0. We propose constraining the search to a small interval (e.g. [0, 25]) and performing a
local maximization of the log-likelihood function, or equivalently finding

’

n}gin[n . ln{(z - yto(e)) P"(G)(z - l#o(e))} + In|P (9)|j|

over this domain. A simple golden section search seems appropriate for this task, since
the assumption of unimodality over a small interval is not unreasonable. Numerical
investigation showed this assumption to be valid for all but the smallest sample sizes.

Appendix C. Extension to Other Models

The development given here has assumed the steady model, which corresponds to an
ARIMA(O, 1, 1) model in that the two models have the same autocorrelation structure. In
this appendix we show how the results can be extended to more complicated ARIMA
models.
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MacGregor (1973) shows the correspondence between the ARIMA model representation
and the usual control theory state-space representation (see Astrom (1970)) such as used
in the steady model. Using the backward shift B-operator notation (defining Ba, =a,_,),

the general ARIMA model of order (p, d, q) may be written as

(1-6,B----—0,B%)
TU-BY(-gB- 9,8

Vi

6,(B)

= WE' (Cl)

where {g;7=1,2,...} is a white noise sequence (or more generally a sequence of
random shocks) with mean zero and variance 6. The numerator consists of a single
term, Bq(B) , a polynomial of moving average terms. The denominator term V"(pp(B)
consists of two terms, a backward difference term V¢ and ¢,(B),a polynomial of

autoregressive terms. The @’s, 0’s and ¢ are parameters that must be estimated from

the data. For most time series encountered in practice the order of p, d, and q rarely
exceeds two.

Alternatively, the same model can be given the state-space representation:

Y, =HO +¢

0, =J6_ +T¢_, C2)
where y, is a vector of output variables, 6, is a vector of state variables,
{€,,t=1,2,..., n} is a vector-valued white noise sequence with variance-covariance
matrix given by Var(g, )=V, ,and H, J,and I" are matrices of parameters. The

corresponding ARIMA model can easily be obtained from this representation as
(substituting 0 = (I - JB)'TB¢,):

y, =[H(I-JB)'TB+I],. (C3)

However, the inverse problem of determining a state-space representation from an
ARIMA model is less straightforward because the solution is not unique. MacGregor
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(1973) demonstrates explicitly how convenient state-space representations of ARIMA
models with a minimum number of parameters can be derived. We will give a simple
example below.

Consider the ARIMA(1, 0, 1) model (equivalently ARMAC(1,1)), which can be expressed
as

Y@y, =E§ _elgr—l’
or equivalently using the backward difference operator,

< ((11: fij?) - (C4)

Using the technique from MacGregor (1973), an equivalent state-space representation is
y, =X, +& (C5)
X, =@x_, +(¢-6)E,

where x, plays the role of the state variable, the unknown process mean at time t. To see
that model forms (C4) and (C5) are equivalent, solve for x, in expression (C5):

(I1-¢B)x, =(¢,—6)B¢,, or
_ ((pl -el)B
X, =———"—F¢,.
(1—(p1B)

Substituting into the equation for y,,

_e-98 _0-6B)
YT acen T T B

which matches the expression in equation (C4). Once the state space representation of an
ARIMA model has been derived, the Bayesian estimation technique presented in this
paper can be applied to the state variable x,. For example, in model (C5) above the

parameters 6, ¢,, 67, and x, would all be estimated after each new data point became

available and the filtering algorithm would be applied in the same way as with the steady
model. The advantage of this representation is that probabilistic information about the
process mean x, is readily available in the form of a posterior distribution. So the
methodology described above for the steady model can be extended in a natural way to
the general ARIMA(p, d, q) model.
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Table 1. Increase in MSE as a Function of Sample Size for Various Values of 0

25

n\0 .05 .10 .15 25 .50 1.0 2.0 3.0 4.0 5.0

5 241% | 137% | 103% | 76% 66 % 63% 83% 100% | 114% | 140%
10 108% | 82% 69% 66 % 57 % 58% 65% 79% 93% 101%
15 66 % 61% 56 % 52% 48 % 47 % 52% 58% 74% 80%
25 48% 43% 41% 36% 32% 33% 28% 36% 35% 36%
50 28% 25% 20% 17% 15% 12% 15% 14% 15% 18%
75 19% 14% 12% 10% 8% 8% 10% 9% 10% 12%
100 15% 10% 9% 6% 7% 6% 7% 8% 7% 8%
200 6% 4% 3% 3% 3% 3% 4% 4% 5% 5%




Figure 1. Simulations of Process Model (1) for 6 =.05, 1.0, and 5.0, each with o, = 1.0.
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Figure 2. Weights Applied to Process Data for 8 =.05.
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Figure 3. Weights Applied to Process Data for 6 = 1.0.
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Figure 4. Weights Applied to Process Data for 6 = 5.0.
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Figure 5. Simulated Distributions of 8 for 8 =.05, with Sample Sizes n =10, 25, 50, 75, 100, and 200.

Theta Value

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Simulated Distribution of Theta Values
(Actual Theta = .05; Sample Sizes n=10, 25, 50, 75, 100, 200)

Sample Size

30




Figure 6. Simulated Distributions of 6 for 8 =1.0, with Sample Sizes n =10, 25, 50, 75, 100, and 200.

Theta Value

N W R OO N 0 © O

[ TR N

Simulated Distributions of Theta Values

(Actual Theta = 1.0; Sample Sizes n=10, 25, 50, 75, 100, 200)

* oickkk X

Mok

-----

*

————— ik icik ok ok dok ok

*

%ok

———— 0B ok kk  k kk

¥*

—liFlbkiciolikiok k k% kk Xk

1

[

75

Sample Size

31

|

100

|
200




Figure 7. Simulated Distributions of 6 for 8 = 5.0, with Sample Sizes n = 10, 25, 50, 75, 100, and 200.

Simulated Distributions of Theta Values
(Actual Theta = 5.0; Sample Sizes n=10, 25, 50, 75, 100, 200)

25 — $ z
i *
20 — g
$ 15 — ;
()
>
g
)
£ 10 —
5 ——8t o e v hmeccafe e rc et rmc e rr e s e rncnf e e e e — L w e e e e e
0 — | |
I I I | I |
10 25 50 75 100 200
Sample Size

32



Figure 8. Battery Cathode Weights from a Low Volume Production Run.
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Figure 9. Battery Cathode Weights with Confidence Intervals for the y,'s (n = 25 and n = 50 data values).
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Figure 11. Battery Cathode Weights with Confidence Intervals for the y,'s (n = 143 data values).
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Figure 12. Estimates of 6 for sample sizesn =3, 4, 5, ..., 143.
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